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ON THE INFLUENCE OF INHOMOGENEITIES ON THE VIBRATIONS OF A CYLINDRICAL SHELL* 

R.A. DUDNIK, E.A. MAKEYEVA and E.A. FIYAKSEL 

The dynamic characteristics of a cylindrical shell (CS) of unlimited 
length with an inhomogeneity stiffly clamped along the shell generator 
distributed along the azimuth are analysed.The solution obtained enables 
one to represent the expression for the eigenmodes and frequencies of the 
low-frequency azimuthal branch of the vibrations of an inhomogeneous CS 
in the approximations of technical theory in analytic form. The 
influence of the inhomogeneity on the distribution of the vibrational 
velocity is clarified, which enables the vibration-acoustical 
characteristics of inhomogeneous systems of this kind to be diagnosed. 

A number of papers /l-3/ have been devoted to the analysis of the vibrational character- 

istics of thin CS with inhomogeneities of the attached-mass type. However, the problems of 
the vibrational characteristics associated with changes in the vibrational velocity dis- 
tribution under the action of an inhomogeneity have been studied in much less detail. 

1. The vibrations of an infinite cylindrical shell (CS) along whose generator an inhomo- 

geneity characterized by a mass per unit length m, and a moment of inertia I, with respect 
to rotation through an angle fi around the normal to the shell surface (for 'p = n) are 

examined. The azimuthal dimensions of the inhomogeneity are represented by the parameter 4 = 
'poln (O< 2cp,< n/2), and the centre of inertia of the inhomogeneity is found for cp = TI. 

We will limit ourselves to the simplest case corresponding primarily to the low-frequency 

azimuthal modes of CS vibrations, and we will neglect the tangential forces of shell inertia. 
We will investigate the vibrational characteristics ignoring the reaction of the intrinsic 
radiation field (which occur for CS vibrations in air). Then by using the approximation of 
technical shell theory we obtain the following system of equations of the selfconsistent 
problem of forced vibrations of an inhomogeneous CS in an elastic medium by using the 
Ostrogradskii-Hamilton principle 

where W is the radial CS displacement and the prime denotes a derivative with respect to q. 
The system (1.1) is solved simultaneouslywith the equationscorresponding to rigid clamp- 

ing of the inhomogeneity on the shell surface 

r = a, W IrCzn_v‘, - W Im__n+y. = --6a sin 2nq, (1.2) 

w' jQp=K_Qp. = w' IQ=_*+"* = CzlY 

where F = F (cp) is the intensity of the external harmonic force; in the case of a local force 

applied at the point cp = 'pl, we have F = F(‘)aP6 (w - IJ ) 
force and the moment of the force applied to the inhomog&eity. 

and F(N) J{(N) are the external 
The following dimensionless 

parameters are used in systems (1.1) and (1.2) 

5 = co/o. a = m,/("nnl,a), x : I,l(2nm,a3) = aIS2 

I, = ln,/t,q?, Ii =- h,ia, A Eh/(l - v2) 

(O] = o,p, p -T h/(JG%). (00 mm c’I’E/(p, (1 - YZ)), nz, I p,h) 

(1.3) 

Here E is the dimensionless frequency of the external harmonic force, o,, is the fre- 

quency of the pulsating shell vibrations, CI is a parameter of the inhomogeneity equal to the 

ratio between the mass per unit length of the inhomogeneity and the shell of radius a, m, is 
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the mass per unit of surface of a shell of thickness h,x is a parameter characterizinq the 
moment of inertia of the inhomogeneity, h, is the effective dimension of the inhomogeneity, 

and E, v, P. are Young's modulus, Poisson's ratio,,and the density of the shell material, 
respectively. 

The system of equations can be solved by well-known methods by representing the solution 
in the form of series in the eigenmodes of the vibrations corresponding to a homogeneous CS. 
This results in a system of algebraic equations in the amplitudes of the vibrations that 
characterize a system of coupled harmonic oscillators between which the coupling occurs both 
via the surrounding elastic medium as well as via the inhomogeneity. The magnitude of the 
coupling increases as the inhomogeneity parameters a and x incrase; consequently, an analysis 
of the forced vibrations and radiation of an inhomogeneous CS is possible only by numerical 
methods. 

In order to clarify the influence of the inhomogeneity on the nature of the forced 
vibrations it is best to represent the solution in the form of a series expansion in the 
eigenmodes of the vibrations of an inhomogeneous system. In this case, a complete orthonormal 
system of eigenfunctions can be constructed whose fundamental characteristics are obtined 
successfully in analytic form, which enables us to give a graphic physical interpretation of 
the influence of the inhomogeneity on the vibrational-acoustic characteristics of a CS. 

Taking into account that the inhomogeneous system has a plane of symmetry at cp =-0 the 
solution of problem (1.1) and (1.2) can be represented in the form 

W(rp) 7 W(l) (cp) + W(S) (rp) (1.4) 

where W(*)((v) is a symmetric function and Wan antisymmetric function, which permits 
separation of the system of Eqs.tl.1) and (1.2) into symmetric and antisymmetric parts. 

The solution of these equations has the form 

(1.5) 

x =- (yin) sin 2nq, 5 = y (1 - q), @ = yrp/n 

where y = yaci) are the eigenvalues and sqfi) are the eigenfrequencies; En"' are given for 
symmetric (i =: 1) eigenfunctions by the relations 

1 + (a.'l,y/cos 3%))) lctg 5, ctgi + cth 51 = 0, &p’ = (yn”‘h)2 (1.6) 

and for the antisymmetric (i - 2) eigenfunctions by 

1 - (v/n)" sin? 2nrl~rlg j. ctgc + x (y3/(2$))(ctg 5 - cth 5) = 0, 
&,'Z' = (yn(a)/n)2 

(1.7) 

Here p = 2,s is the number of roots of the appropriate characteristic equations. 
The radial displacement in the range rc - cpO< cp < --n + (PO can be determined from the 

geometrical relations 

wt) = (W,~,,,_,,coscp)/cosnrl, wf' := (WpIrp=n.-VOsin Zcp)/sin23cq (1.8) 

Expressions (1.5) and (1.8) determine the eigenfunctions W,(i) of the CS in the ranqe 
-xQcP<n. The orthogonality of W$), whose weight characteristic depends on the inhomo- 
geneity parameters a,x,q can be proved by a well-known method. 

The norm D,(") of the symmetric and antisymmetric vibrations modes is calculated. 
We shall later use the orthonormal eigenfunctions 

&'i' (cp) = W,(i) (rp)/I/D,(',, i = 1, 2 (1.9) 

Let us examine the characteristic singularities of the eigenfunctions 
eigenZ:lues y V) 

%"' and 
(i = 1, 2). For small values of the inhomogeneity parameters ae',l, x<l (1.3) 

the solutions'of thecharacteristicEqs.(1.7) and (1.8) have the form 

(2.1) 

Note that in the limit case when a+0 and XI-+0 (the inhomogeneity shrinks to a 
point) y-t nq, sin 5 = 0,, x = 0 the eigenvalues and eigenfunctions are 

y4(0 = qn, En"' = 42 (i = 1, 2); 3&(i) = n-"* cos Qcp, (2.2) 
*q(2) = n-'/z sin ~cp 
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which is identical with the well-known relationships for a homogeneous CS. 
Therefore, the presence of an inhomogeneity results in a reduction in the degeneration 

of the eigenvalues for a CS when identical eigenvalues yq and eigenfreguencies En (2.2) 
correspond to eigenfunctions of the type c*s Pep and sin prp. 

It follows from relationships (1.5)-(1.7), (2.1) that the mass of the inhomogeneity 
(the parameter a) exerts its influence primarily on the symmetric modes of vibrations and 
the moment of inertia of the inhomogeneity (the parameter x) on the antisymmetric modes; 
the parameter characterizing the azimuthal dimension of the inhomogeneity (n) exerts its 
influence on both the symmetric and antisymmetric vibrations modes. For a+o,x+=o a 
reduction in the eigenfrequency values occurs for the system &c')$= &@). 

The solution of the characteristic Egs.fl.6) and (1.71 is obtained successfully in the 
important practical case of large values of the inhomogeneity parameters a >I, x>l, when 

As computations show, relations (2.3) determine the eigenvalues with less than 5% error 
for a, x >: 2, which enables these relations to be used for a clear interpretation of the 
influence of inhomogeneities on the CS vibrational characteristics. 

It follows from relations (2.1) and (2.3) that an inhomogeneity changes the eigenvalues 
of the q-th mode of vibrations within the limits 

q/(l - $1) . . y4(1) in < Qi/(l - .n), i .z 1, 2 (2.4) 

i.e., the moment of inertia (the parameter x) of the inhomogeneity exerts a stronger in- 
fluence on the change y,'"' compared with the influence of the mass of the inhomogeneity 
(the parameter a) on y,('). 

An increase in the azimuthal dimensions of the inhomogeneity (II) results in an increase 
in the eigenvalues for both the symmetric and antisymmetric modes of vibration, where even 
for large values of a the reduction in the frequency can be compensated for the symmetric 
modes because of the increase in "1. For instance, for a = 1, q = 0.02 the value jfQ for 
the second mode is identical with the eigenvalues of a homogeneous system. 

Fig.1 Fig.2 

Relations (2.1)-(2.4) govern the characteristic deformation singularities of the 
eigenmodes of CS vibrations, as can be seen in Fig-l, where the moduli of four symmetric modes 
of vibration are presented for q = 0.2 (on the left) and five symmetric modes for q =0.05 
(on the right). Curves 1, 2 and 3 correspond to the values a = 0.02, 0.2, 1. 

A decrease in the distances between the nodes 9P occurs in the neighbourhood of the 
inhomogeneity due to the effect of the inhomogeneity, and a reduction in the antinode amplitude 
occurs at the point where the inhomogeneity is situated &("(--" i- 'pO; x - cpO) as compared 
with the corresponding parameters for a homogeneous CS (2.2). 

Values of the coefficients of the expansions of gqcti in Fourier series in the eiqen- 
functions of a homogeneous system (symmetric and antisymmetricf 

can be more convenient measure of the degree of eigenfunction deformation under the action 
of an inh~~eneity for practical purposes. 

The influence of the inhomogeneity parameters on the deformation of the eigenfunctions 

%oR(' can be traced from the dependence of Q.,, onaand q. As a increases, the values 
of %7n increase and tend to constant values for fairly large a. An increase in the 
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parameter rl results in a reduction in the values of the expansion coefficients a,,. It should 

also be noted that the coefficient Q~= 0, for certain combinations of the parameters a 

and q (for example, for 'I = 0.1, CL- (1.15). It is characteristic that the inhomogeneity results 
in such a deformation of the eigenfunctions when terms corresponding to pulsating (m:-0) and 
oscillating (m- I) CS vibrations occur in expansions of the symmetric eigenfunctions ~#~(l)((o) 
with numbers q>2. Terms of the expansion corresponding to oscillating (m= i) homogeneous 
shell vibrations occur for antisymmetric eigenfunctions IPY (2' (cp) for q>-". This circum- 
stance is of practical importance for problems concerning inhomogeneous CS radiation. 

3. We will analyse theforcedvibrations of an inhomogeneous CS by a known method by 
representing the solution of the problem of forced vibrations in the form of a series ex- 
pansion in the eigenmodes of the system vibrations in a vacuum 

(3.1) 

where v0 is the dimensional amplitude and e,(i) are the desired amplitudes of the vibrational 
velocity expansion. 

Substituting the expansion (3.1) into (1.1) and using the orthogonality property of the 
eigenfunctions 11, (i) 
be obtained in theqfbrm 

the solution of this system of equations in the amplitude QiJ can 

The solution (3.2) is obtained under the assumption that a local force F = F,a-Ti(cp- vl), 

acts on the shell, where 'pl. is the point of application of the force. We note that the sol- 
utions represented in the form of a series expansion in eigenfunctions of the inhomogeneous 
CS result in a diagonal system of equations in cg (I) and we obtain the solution (3.2) when 
there is no interaction between the CS modes of vibration. Such interaction occurs only when 
the reaction of the medium to the CS vibrations is taken into account. 

If the solution of the problem of forced CS vibrations is represented in the form of 
series expansions in the eigenmodesof homogeneous CS vibrations 

then the system of equations in the amplitudes A,,, and B,, will differ from the diagonal 
system, which is associated with interactions between the modes of the homogeneous CS vibra- 
tions in terms of the existing inhomogeneity. The solution of the system the equations in 
the amplitudes A, and B, can be obtained only by numerical methods, which makes a physical 
interpretation of the influence of the inhomogeneity on the CS vibrational characteristics 
difficult. 

The solution (3.1), (3.2) enables us to clarify the fundamental singularities of this 
influence. Indeed, relationships (1.6), (1.7), (3.1) and (3.2) determine the dependence of 
the vibrational velocity on the frequency and azimuth IJ (%. VP). The frequency dependence of 
the vibrational velocity has a sequential series of minima when the resonance conditions %= 
%(;' (3.2) are satisfied. 

Relationships (3.1) and (3.2) allow a graphical illustration of the influence of the 
point of application of the force on the vibrational characteristics of the system. For 
instance, in the case of practical importance when the local force is applied at the centre 
of the inhomogeneity (v,= n), only symmetric modes of vibration will be excited for which 
gp(i) ((p = n) # 0, (i = 1, 2). If the point of application of the local force does not coincide 
with the centre of the inhomogeneity (n #n), a moment of the force appears and both sym- 
metric and antisymmetric modes of vibration will be excited provided that 'pl does not 
coincide with the location of the angle in the vibratational velocity distribution. Therefore, 
the selection of the method of exciting the system can exert a substantial influence on the 
value of the amplitudes q(i) and, therefore, on the vibrational acoustic characteristics of 
the inhomogeneous CS. 

Graphs of V(T) as a function of the azimuthal angle at the resonance frequencies 
E = E, for Ep= 3 are shown in Fig.2 for z) = 0.1 and different values of a (the notation 
on the curves is the same as in Fig.l), and the point of application of the force is 'PI = n. 
It is seen that as a increases a decrease occurs in the amplitude of the velocity in the 
region where the mass is clamped. Therefore, relations (3.1) and (3.2) can be used for the 
vibrational diagnostics of inhomogeneous CS, they show the nature of the changes in both the 
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eigenfrequencies and the distribution of the vibrational velocity as a function of the 
inhomogeneity parameters. 
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METHOD OF EXTRACTING SINGULARITIES IN THE PROBLEM 

OF THE HYDROELASTIC VIBRATIONS OF A SHELL EXCITED BY CONCENTRATED FORCES* 

S.P. BORSHCH, A.L. POPOV and G.N. CHERNYSHEV 

An asymptotic justification for the procedure /l, 2/ of matching the 
integrals of the vibrations of a shell and the Helmholtz equations for 
the acoustic pressure is given in the example of the problem of the 
vibrations of a closed spherical shell in an infinite medium, excited by 
forces applied at the poles of the shell. The order of constructing the 
approximate solution, based on replacement of the fluid influence by 
several apparent masses each of which is related to a specific inteqral 
of the shell equations, and on extraction of the singularities of the 
solution at the point of application of the force, is traced. The 
results are compared with the exact solution of the problem in the form 
of series in spherical functions /3/. 

1. We will write the original system of equations of the axisymmetric vibrations of a 
spherical shell and an ideal compressible fluid while separating out the time dependence, 
given in the form e-10t in the functions of the load 2, the acoustic pressure p and the 
shell displacements u and w 

(1 + Y) LL'," - a),,~, - (1 - Y) pOu = 0, (I, = sin-'0 (U sin IQ, (1.1) 

[r*-(l-v)W]W- c*2 ~+--(&-U'p)wJ-$-(z-~p(s) 

t2p + (r*p, ,), p + (kr)? p = U, lirn r(p. )_ - ilzp) = lJ 
7-m 

p,r 1s = o+m, a0 = COT,, (p,/E)“x, k = o/c 
p,, = 1 + a02 (1 + Y), D = 2Eh3/[3 (1 - +)I 

csz = 2Ehr,*/D, T2 = ( ),eo + ctg 8 ( ),e, ( ),= = a/ax 

Here r and 0 are spherical coordinates (1. = r0 is the equation of the shell surface S), 
h is half the shell thickness, w is the angular frequency of the vibrations, ~0, E, y are 
the density, Young's modulus, and Poisson's ratio of the shell material, and p and c are the 
density and velocity of sound in the fluid. 

One of the effective approximate methods of solving two-dimensional problems of the 
type (1.1) is to reduce them to a one-dimensional problem on the shell surface by using an 
exponential representation of the fluid pressure integrals in the neiqhbourhood of the shell 
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